
Image and Vision Computing 31 (2013) 969–981

Contents lists available at ScienceDirect

Image and Vision Computing

j ourna l homepage: www.e lsev ie r .com/ locate / imav is
Corisco: Robust edgel-based orientation estimation for generic
camera models☆
Nicolau Leal Werneck ⁎, Anna Helena Reali Costa
Intelligent Techniques Laboratory (LTI), CEP: 05508-900, University of São Paulo (USP), Av. Prof. Luciano Gualberto trav.3, n.158, São Paulo, SP, Brazil
☆ This paper has been recommended for acceptance by
⁎ Corresponding author. Tel.: +55 11 30915397; fax: +

E-mail addresses: nwerneck@gmail.com (N.L. Wernec
(A.H.R. Costa).

URL: http://nwerneck.sdf.org (N.L. Werneck).

0262-8856/$ – see front matter © 2013 Elsevier B.V. All ri
http://dx.doi.org/10.1016/j.imavis.2013.10.004
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 October 2012
Received in revised form 21 September 2013
Accepted 10 October 2013

Keywords:
Grid mask
Edgels
Orientation estimation
Omnidirectional vision
Monocular vision
Quaternions
The estimation of camera orientation from image lines using the anthropic environment restriction is a well-
known problem, but traditional methods to solve it depend on line extraction, a relatively complex procedure
that is also incompatible with distorted images.We propose Corisco, a monocular orientation estimationmethod
based on edgels instead of lines. Edgels are points sampled from image edges with their tangential directions,
extracted in Corisco using a grid mask. The estimation aligns the measured edgel directions with the predicted
directions calculated from the orientation, using a known camera model. Corisco uses the M-estimation
technique to define an objective function that is optimized by two algorithms in sequence: RANSAC, which
gives robustness and flexibility to Corisco, and FilterSQP, which performs a continuous optimization to refine
the initial estimate, using closed formulas for the function derivatives. Corisco is the first edgel-based method
able to analyze imageswith any cameramodel, and it also allows for a compromise between speed and accuracy,
so that its performance can be tuned according to the application requirements. Our experiments demonstrate
the effectiveness of Corisco with various camera models, and its performance surpasses similar edgel-based
methods. The accuracy displayed a mean error below 2° for execution times above 8 s in a conventional
computer, and above 3° for less than 2 s.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

This article describes Corisco, a monocular orientation estimation
method. It explores the restriction of an anthropic environment, also
called a Manhattan world, which means the environment must contain
lines that are parallel to the axes of a natural reference frame, defined
by three mutually orthogonal directions. The orientation estimated by
Corisco is the three-dimensional rotation between this natural reference
frame and the camera reference frame. This method can be used inside
larger multiple-view systems for environment reconstruction and
camera tracking [1,2], to provide initial estimates from individual
images while also enforcing the anthropic environment restriction.
Corisco can also be used in lightweightmobile and portable applications,
for example, providing a heading reading for a mobile robot to drive
along a corridor or street, thus dismissing a simultaneous position
estimation or environment reconstruction.

The problem of estimating orientation from the lines of a single
image using the anthropic environment restriction is well known
[3–7], but the dependence of the traditional methods on the extraction
of lines from the images creates a number of limitations. Line extraction
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cannot be applied to images obtained with a camera model other
than perspective projection, because in that case the environment
lines are projected into curves on the images. Line extraction also
constitutes a relatively difficult problem to be solved, involving the
estimation of the parameters of an unknown number of entities, while
orientation estimation by itself depends only on the estimation of the
few parameters that model a three-dimensional rotation. It is possible
to deal with image distortions by fitting curves to the image [8–10],
but this only solves the problem of analyzing distorted images while
further increasing the difficulty of the extraction of those geometrical
entities.

These limitations can be overcomeby using edgels as the fundamental
geometrical entity of the analysis. Edgels are points that are part of an
image edge, either straight or curved, associated to the information of
the tangential direction of the edge at that point. Edgels are easier to
handle and more flexible than lines, and their use does not require the
estimation of multiple intermediary numeric parameters. Edgels are
closely related to the image gradient, and their extraction is based on
edge detection techniques. Edgel-based orientation estimation methods
[11–16] work by minimizing the angular errors between the measured
directions of the extracted edgels and the directions predicted as a
function of the orientation parameters. The method proposed here,
Corisco, follows this same principle, but introduces many improvements.

The objective of this research is to explore the potential of the edgel-
based analysis to overcome the limitations of line-based approaches,
thus creating a method that offers a good performance while being
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more simple, flexible, and robust. The main contributions of our
research are in the following features, which make Corisco attractive
for practical implementations:

• Corisco directly analyzes images created with any camera model,
including radial distortions and omnidirectional models.

• Corisco allows for a compromise between speed and accuracy, so its
performance can be tuned according to the application requirements.

• Corisco does not depend on strong restrictions of the solution, such as
that the orientation should be approximately upright.

• Corisco uses a direct implementation of a constrained non-linear
continuous optimization algorithm, with simple expressions for the
objective function and its derivatives.

The possibility of working with different camera models using
edgels was recognized in the past [14] but, to our knowledge, no
previous research has effectively demonstrated this. Edgels have
been used to estimate the radial distortion coefficient of a camera
model, however using the plumb-line constraint. That research by
Rosten [17] demonstrates the advantages of edgel-based techniques
to deal with image distortions. Corisco differs from that proposal by
estimating orientation and also working on the original space of
the acquired image, which is more desirable because it usually
improves the estimation accuracy [18], and also avoids the limitations
of the perspective projection.

Fig. 1 illustrates the application of Corisco to estimate the
orientation of an input image. Other necessary inputs are the parameters
of the cameramodel, such as the focal length and projection center in the
case of the perspective projection, and a few control parameters for the
Corisco process. The output is the camera orientation relative to the
natural reference frame, given by a set of parameters Ψ that model a
three-dimensional rotation. Corisco works with quaternions, therefore
theΨ returned is a vector of four values restricted to |Ψ|=1. These values
can be used to calculate a three-dimensional rotationmatrix if necessary.
The bottom left part of Fig. 1 displays the edgels extracted from the input
image. These geometrical entities are obtained in the first analysis stage,
and the input image is not used again after that. The bottom right part
of Fig. 1 displays the input image overlaid with a set of triplets of line
Fig. 1. Overview of how Coriscoworks. The inputs are the image to be analyzed (top left),
and a set of parameters that define the cameramodel and control the process. Corisco (top
right) outputs the numeric parameters Ψ of the estimated orientation of the camera
relative to the natural reference frame. The image analysis performed by Corisco produces
a set of edgels (bottom left) that are located over the image edges, and the estimation
procedure is based on a calculation of predicted directions for these edgels. The directions
predicted from the correct orientation are aligned to the image edges (bottom right).
segments. These line segments indicate the three possible edgel
directions predicted at each different point from the correct orientation,
also using the camera model parameters. The estimation procedure
seeks an orientation that causes the predicted directions to be aligned
to the edgels.

Section 2 reviews existing edgel-based orientation estimation
methods, and discusses the estimation techniques on which they are
based. Section 3 describes Corisco. Section 4 discusses the experiments
conducted with Corisco, and Section 5 contains conclusions about the
research and some ideas for future developments.

2. Edgel-based orientation estimation

This section reviews existing methods for edgel-based orientation
estimation [12–16]. All of these methods, including Corisco, share a
common process structure with the following processing blocks:

• Data extraction and sub-sampling— This is thefirst analysis stagewhere
a number of geometrical features are extracted from the image. The
resulting dataset is the input to the second stage of the process, where
the actual estimation is performed by an optimization procedure. This
data is often sub-sampled in order to accelerate the process.

• Objective function calculation procedure — This is a procedure that
depends on the extracted data, and also receives as argument the
parameters of a hypothetical orientation. The output is the value of an
objective function. During estimation, this calculation is performed
many times for different orientation parameters.

• Optimization procedure — The optimization procedure constitutes the
second processing stage. It interacts with the previous procedure,
feeding hypothetical orientations and seeking to optimize its output
value.

The following subsections discuss each of these blocks, but before
such discussion, some definitions are necessary.

2.1. Definitions

An edge is an entity with length but no width, such as a straight
line or a curve. An edgel is a point sampled from an edge, associated
with the tangential direction of the edge at that point. Edge detection
is the binary classification of an image point as being part of an edge
or not. The recognized points are called edge points. Edge detection
should not be confused with edge extraction, which is usually based
on an edge detection followed by an algorithm such as flood-fill
[6,7,10,2], RANSAC [9,1,19], J-linkage [20], RUDR [21] or variations of
the Hough transform [22,23]. These algorithms fit geometrical models
to clustered edge points.

Some authors use the name edgel for what we call edge points, but in
the present article an edgel requires an associated direction. It is very
easy to create an edgel extraction procedure based on an underlying
edge detection. It should be noticed that none of the alternative edgel-
based orientation estimation methods referred here used the term
edgel to describe their observations; therefore, our discussion involves
some reinterpretation of them.

One example of edgel extraction that is not directly based on edge
detection is the procedure employed by Eade and Drummond [24].
These authors use the term edgel in their article, but they call edgelet
the geometrical entity that is being tracked in space. We do not make
this distinction, and we simply call edgel any point with associated
direction, even in three-dimensions.

2.2. Data extraction and sub-sampling

All edgel-based orientation estimation methods start with cal-
culating the image gradient. The edgels in early methods [12–14]
were directly obtained from the gradient at the locations of the image
pixels. The method proposed by Coughlan and Yuille [11,12] did not
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employ any kind of sub-sampling, but later authors [13,14] used a
random sub-sampling of the pixels in order to reduce the volume of
data, and also to smooth the objective function. Schindler and Dellaert
[14] also used a thresholding based on the magnitude of the gradient,
in a first attempt to apply edge detection to this problem.

Dennis et al. [15] applied edge detection using the relatively
sophisticated method of Elder and Zucker [25], but no further sub-
sampling was performed. A subpixel refinement of the location of the
edge points was also employed in that method. This actually no longer
constitutes just detection, but an extraction procedure that takes in
consideration the position of the detected point and the local direction
of the gradient.

Werneck and Costa [16] introduced the sub-sampling by grid
masking, but did not employ edge detection. Grid masking is
deterministic, and similar to the tiling used by Deutscher et al. [13],
resulting in a more homogeneous sampling than random techniques.
Tiling is also employed by Eade and Drummond [24]. One important
difference between grid masking and the procedure from Eade and
Drummond [24] is that in that case edges may be ignored when they
are located near the corners of a tile, so grid masking results in a more
regular and reliable sampling.

The sub-sampling by image lines and columns resulting from grid
masking is more natural than just selecting random image pixels
because edges have no area and, therefore, have a peculiar relationship
with the image resolution. The fraction of image pixels that are edge
points increases with the inverse of the resolution, and the grid mask
deals directly with this phenomenon. This form of sub-sampling can
also be easily integrated with edge detection, as adopted in Corisco
and described in Section 3.

2.3. Objective function

All the previously proposed methods [12–16] are based on
probabilistic techniques for parameter estimation. That means that an
observation model must be defined, starting with the definition of
probability density functions (PDF) for the observed quantities. The
estimation is carried out by the optimization of an objective function
that is defined from these individual functions, usually by defining a
likelihood function for the set of observations. One important point in
this problem is that the observations can be produced by lines in each
of the three possible directions in the environment, defining three
different classes. Because the classes of observations are not known, it
is necessary to use an estimation technique such as the maximum a
posteriori (MAP) [12,13] or the Expectation-Maximization (EM) [14,15].

In most of the previous methods the observed quantities were both
the magnitude |g| and direction ∠ g of the image gradient at a set of
points over the image. Early proposals [12,13] followed the idea that
the edge detection should be integrated with the estimation process,
as reflected in their objective functions. In more recent proposals
[14,15] the analysis of |g| started sooner and separately, and the
objective function became more clearly dependent on ∠g only.

Different distributions have been used in thesemethods tomodel the
observation of the gradient or edgel directions, including the boxcar
function [12], triangular [13,16], Gaussian [14] and generalized Laplacian
[15]. In the case of the Gaussian distribution with the EM technique
proposed by Schindler and Dellaert [14], the resulting objective function
was

F Ψð Þ ¼
XN
n

cxn ∠gn−hx pn;Ψð Þ� �2 þ cyn ∠gn−hy pn;Ψð Þ� �2
þ czn ∠gn−hz pn;Ψð Þ� �2

:

ð1Þ

the hk functions calculate the predicted direction of an edgel from class k
at position pn for the orientation Ψ. The cn

k coefficients are the
probabilities of each observation belonging to class k= x, y or z. They
are calculated in each E-step of the estimation procedure, also taking
into account the probabilities of the observation not being an edge, and
of being a non-aligned edge — these re-calculations of cnk from the EM
technique make the process a little more complex than the outline at
the beginning of this section. In Eq. (1) the use of the Gaussian model
and the application of the logarithm function and the Jensen inequality
result in an expression that is a simple weighted sum of squared
differences. In the proposal of Denis et al. [15] the different PDF does
not result in such a simple error function, and their calculation of the
cn
k coefficients is also different because all the observations are assumed
to be edge points.

2.4. Optimization

The optimization method employed by Coughlan and Yuille [11,12]
was a simple and unsophisticated sweep through the parameter
space. The orientation was parameterized using Euler angles, and the
search was performed initially around the vertical axis, assuming an
approximately upright camera. To speed the process up, a coarse-to-
fine strategy was also employed. Deutscher et al. [13], on the other
hand, employed stochastic search. The focal length was also estimated
by that method, exploring the flexibility of this optimization technique.

Schindler and Dellaert [14] employed a continuous optimization
algorithm, the Levenberg–Marquardt algorithm, exploring their quadratic
objective function. For the first derivatives these authors employed
automatic differentiation. In the case of Denis et al. [15] the objective
function was not quadratic, so the more general BFGS optimization
algorithmwas employed,withnumeric differentiation for the derivatives.

The latter two methods also rely on an initial brute force sweeping
[12]. After the initial trials are tested the best hypotheses are refined
by continuous optimization, and the best result selected. Schindler and
Dellaert [14] note explicitly that their optimization presented great
sensitivity to the initial estimates, and that a better and more general
initialization procedure would be desirable. The method proposed by
Werneck and Costa [16] also employs multiple initializations, and is
based on the Powell optimization algorithm.

2.5. Discussion

This section reviewed existing edgel-based orientation estimation
methods. The approach initially showed to be effective [12], but it
was later shown that better estimation and optimization techniques
could be applied to create more efficient methods [13,14]. While it
was initially thought that analyzing the image gradient directly could
be beneficial, the use of edge detection showed to enhance the per-
formance with no detriment to accuracy [15].

Thework byDenis et al. [15] guided the research on the problem to a
new level by making their experimental data available. Some of the
practical issues that were found in the previous studies to require
further investigation are:

• How to employ sub-sampling with controlled effects on speed and
accuracy.

• How to produce initial estimates in a more flexible and efficient way.
• How to deal with cameramodels other than the perspective projection.

These issues were targeted in the development of Corisco, as shown
in Section 3.

3. Description of Corisco

Fig. 2 displays a block diagramof the process that constitutes Corisco,
from the initial image analysis to the output of the estimated orientation
parameters. The steps are:

1. The image is analyzed in the Edgel extractor block in order to produce
a list of edgels.
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2. A separate Camera model block produces more data complementing
the edgels. The resulting dataset is the input to the second stage of
the process.

3. This second stage is an optimization procedure that minimizes an
objective function, calculated by the Objective function block. This
block is executed once for each iteration of the optimization
algorithms.

The optimization procedure has two steps, with a different iterative
optimization algorithm in each of them. The first step produces an initial
estimate used to initialize the second step. The Objective function block
can also optionally return an estimated class k for each edgel, k= x, y
or z.

This process is similar to the outline from Section 2, the largest
difference being the separate Camera model block that performs an
intermediary processing of the extracted data. In the other methods
the camera model is often part of the calculation of the objective
function, and this separation is one distinctive characteristic of Corisco.
The remainder of this section was organized according to the blocks
from Fig. 2.

3.1. Edgel extractor

The Edgel extractor block from Corisco is based on awell-known edge
detection technique [26] coupled to the use of a grid mask [16]. The
inputs to this block are the input image and the grid size Cg given in
pixels. The output is a list of N edgels, each one defined by a pair of
image coordinates pn and a normalized vector un orthogonal to the
direction of the line or curve over which the edgel was found, and
thus parallel to the image gradient over pn.

The procedure starts with the calculation of the image gradient. A
special direction normalization procedure is necessary during the
analysis to handle color images. Corisco was implemented with the
5 × 5 maximally-consistent gradient filter developed by Ando [27]. An
initial Gaussian smoothing is optional.

The analysis of one horizontal grid line is performed by the following
steps:

1. For each image pixel, fetch its corresponding gradient vector in each
channel. If the horizontal direction of the vector is negative, multiply
the vector by−1. In the case of color images the vectors for this pixel
are then added together. Gradient now refers to this vector.

2. Perform an edge detection, leaving only the pixels that are local
maxima of gradient magnitude, and with a magnitude above a
threshold value.
3. For each of the detected edge points, perform a new test of the
gradient direction. If the angular distance between the gradient
and the horizontal grid line is larger than 45°, the point is
discarded.

4. For the remaining edge points, perform an edge extraction in the
vicinity of the point, estimating the exact position where the
detected edge crosses the grid line, with sub-pixel accuracy. This is
similar to a usual position refinement after edge detection, except
the edge is sought over the horizontal grid line instead of the
gradient direction.

5. Once this more accurate position is found for each detected point, a
new edgel is instantiated at that position, and with the same
direction from the gradient.

The analysis of a vertical grid column works in the same way, as
if the image had been transposed. The pixels that are not part of
the grid lines or columns are simply ignored, acting as masking. As
the edgels are extracted from the grid sweeps, they are simply
accumulated as a set in a single list. This list is returned at the end
of the process.

3.2. Camera model

The Camera model block from Fig. 2 receives as input the intrinsic
parameters that define the camera model, and also the list of edgels
from the Edgel extractor block. The outputs from this block are two
lists containing for each edgel a corresponding Jacobian matrix Jn and
a three-dimensional normal direction sn. This output along with the
extracted edgels makes up all data necessary for the remainder of the
process.Wehere discuss themathematical characteristics of the camera
model and how to calculate the Jn and sn. Their use in further
calculations is detailed in Sections 3.3 and 3.4.

We denote the n-dimensional real coordinate space Rn, and Sn the
space of directions in Rn+1, that corresponds to an n-sphere. A camera
model is an injective mapping S2 → R2, from directions in the three-
dimensional space around the focal point of the camera to the plane of
the image produced by the camera. The mapping from the image
plane to three-dimensional points can be defined in different ways, as
the norm of the output vector is not relevant. This mapping from the
plane to points in space is useful when implementing the method, but
it should be clear that the actual mapping is between points in a plane
and directions in the three-dimensional space.

The most fundamental camera model is based on perspective
projection. If we denote the three-dimensional vector in the camera
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reference frame q, and its corresponding image point p, this projection
is defined by the equations

px ¼ qx=qz
� �

f þ cx py ¼ qy=qz
� �

f þ cy: ð2Þ

this projection has two parameters that must be set, the focal length f
and the projection center c. One example of an inverse mapping for
this projection is

qx ¼ px−cx qy ¼ py−cy qz ¼ f : ð3Þ

There are other camera models outside the perspective projection.
The Harris model [28] is one alternative to handle the radial distortion
caused by some lenses. Many imaging systems also produce images
with strong distortions, such as fisheye lenses, catadioptric systems
[8,10,19] and camera rosettes that produce images with the
equirectangular projection [29].

Table 1 displays the equations from four different cameramodels, all
of which have been tested with Corisco. For a certain model choice and
its parameters, themodel calculates image point p that is the projection
of a given three-dimensional point q in the camera reference frame. If
point q is part of a line in space, this line will be projected on a curve
over the image— a straight line in the case of the perspective projection
— and point pwill be part of this projected line or curve. The tangential
direction of this curve is the predicted direction v for an edgel at p.

The calculation of the predicted direction of an edgel on the image
depends on the camera model, the position of q in space — calculated
from p — and the direction r in the camera reference frame of this
hypothetical line that q is part of. The tangential direction v of the
curve projected on point p can be found by the formula

v∝Jr; ð4Þ

where J is the Jacobianmatrix of themapping calculated for that specific
q, defined by

J ¼
∂px

∂qx
∂px

∂qy
∂px

∂qz

∂py

∂qx
∂py

∂qy
∂py

∂qz

2
664

3
775: ð5Þ

the symbol∝ in Eq. (4) indicates that the calculation yields only a vector
in the desired direction, but with a generic norm. The Camera model
block calculates all of the Jacobian matrices Jn for each extracted edgel
in order to permit future calculations of Eq. (4).

Jacobianmatrix J is also necessary to calculate the three-dimensional
normal direction s fromanedgel. This vector defines a plane that crosses
the camera focal point and also the line that originated the cor-
responding edgel, and it can be calculated by

sn ¼ ux
n J

x
n þ uy

n J
y
n; ð6Þ
Table 1
Some examples of camera model equations.

Perspective
px ¼ qx=qzð Þ f þ cx

py ¼ qy=qzð Þ f þ cy

Equirectangular (lat-lon)
px ¼ ftan−1 qz; qxð Þ
py ¼ fsin−1 qy=jqjð Þ

Harris (radial distortion)

g χð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2κχ2

p
px ¼ p′

x
g p′
�� ��� �þ cx

py ¼ p′
y
g p′
�� ��� �þ cy

Polar equidistant (fisheye)
φ ¼ cos−1 qz=jqjð Þ

px ¼ φ qxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2þqy2

q f þ cx

py ¼ φ qyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2þqy2

q f þ cy
where Jnx and Jny are each line of the matrix Jn, and u is the orthogonal
direction of the edgel, defined by

ux
n ¼ vyn uy

n ¼ −vxn: ð7Þ

the direction rk that defines class k is necessarily orthogonal to any s
calculated from an edgel of that class. Therefore rk can be found from
two different s vectors by a cross product. These normal vectors are
the basis of some orientation estimation methods [30], but they tend
to be less accurate [7,15].

Once the Jacobian matrices and normal vectors are created in the
Cameramodel block, the optimization procedure starts. Both the camera
model and the input image are no longer needed for the remainder of
the process, only the list of N edgels described by their positions pn

and orthogonal directions un, provided by the Edgel extractor block,
and the Jacobian matrices Jn. The normal vectors sn can be left to be
calculated only when necessary. The use of J to calculate an edgel
direction v as a function of the orientation Ψ will be detailed in
Section 3.3, and the use of s to create hypothetical orientations in
Section 3.4.

3.3. Objective function

The expression calculated by the Objective function block from Fig. 2
is themost distinctive characteristic of Corisco. The edgel extraction and
the optimization procedure can be easily modified, but the objective
function is what defines the solution, and it also guides the choice of
the optimization algorithm. The estimation made in Corisco is based
on a residue between the predicted edgel directions vnk and the
measured directions vn, or more specifically the orthogonal measured
direction un, resulting in

unvnk: ð8Þ

vectorsun come from the Edgel extractor block, and the calculation of vnk
will be explained next. Once these residues are calculated a total error
function can be calculated, which will be explained later in this section.

The calculation of vnk depends on the Jacobianmatrices Jn calculated
in the Camera model block, and on the line directions rk that are
calculated from a given orientation Ψ. Corisco uses quaternions to
represent the orientation Ψ; therefore, we can write it as a four-
dimensional vector Ψ=(a,b,c,d). The directions of the three classes rx,
ry and rz can now be obtained from the lines of a rotation matrix
calculated from the components of Ψ

rx
ry
rz

2
4

3
5 ¼ R Ψð Þ: ð9Þ

this calculation is performed by the following quadratic expressions

rx ¼ a2 þ b2−c2−d2; 2bcþ 2ad; 2bd−2ac
� �

ry ¼ 2bc−2ad; a2−b2 þ c2−d2; 2cdþ 2ab
� �

rz ¼ 2bdþ 2ac; 2cd−2ab; a2−b2−c2 þ d2
� �

:

ð10Þ

a normalized quaternion would be necessary to produce normalized r
vectors, but this is not necessary in Corisco because of the final
normalization that happens when vnk is calculated, as shown ahead.
The objective function is therefore naturally defined for any quaternion
in the four-dimensional space.

Fig. 3 illustrates an edgel that is part of the projection of a line over
an image. The drawing shows the rx and ry directions from the natural
reference frame, and the camera reference frame rotated relative to it.
The focal point of the camera is the origin of the camera reference
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frame. The camera uses the perspective projection, and the drawing also
shows its image plane and projection center c. The environment
contains a solid line from class k = y. This line contains a point qn,
which is projected on the image at point pn, defining an edgel with
direction vny, and orthogonal direction un.

Although both vectors refer to the same entity, we always use un

to denote the measured orthogonal direction of an edgel, and vnk to
denote a predicted direction, calculated during the estimation
process. An edgel direction vny can be calculated from ry and the
corresponding Jacobian Jn using Eq. (4). If the calculation assumed
class k= x, it would produce direction vnx, which is not orthogonal
to un, and it would mean that the edgel was produced from the
hypothetical dashed line in the environment, which also crosses qn. It
is worth noticing that although ry and rx are necessarily orthogonal,
vny and vnx are not.

Vector vnk is therefore a function of the edgel position pn, the class k
and the orientation Ψ that defines directions rk. If we define the
auxiliary vector

wnk ¼ Jnrk; ð11Þ

we can then define

vnk ¼
wnk

wnkj j : ð12Þ

The Jacobianmatrices used in Eq. (14) are the ones calculated in the
Camera model block.

The objective function used in Corisco is defined from the unvnk
residue using M-estimation. This Robust Statistics technique replaces in
Corisco the MAP [14,13,16] or EM [14,15] techniques that were used in
the previous methods. The result is the quite simple objective function
expression

F Ψð Þ ¼
X
n

min
k

ρ unvnkð Þ; ð15Þ

where mink is a function that takes the smallest calculated value found
among classes k. The function ρ is an error function that is chosen during
the design of the objective function.

In the estimation techniques discussed in Section 2, the objective
function is created in a bottom-up fashion, from the modeling of the
observation errors to the definition of the actual objective function. In
the case of the M-estimation technique the approach is top-down. The
error function ρ in Eq. (16) is selected directly, although still in the
context of a traditional probabilistic analysis. This analysis shows that
this error function should be a redescending function, which is constant
after a certain threshold. In the previous methods this characteristic is
caused indirectly by the chosen models for the likelihood functions. In
the case of the methods based on EM [14,15], this can also be seen as
an effect of this estimation technique interpreted in the light of the
IRLS algorithm [31], in which the use of the Gaussian model results in
the minimization of a redescending error function. This characteristic
is also justified because it makes the estimation robust against the
great errors caused by incorrect class assignments.

In Corisco the Tukey bisquare function was selected for ρ. This is a
smooth and continuous piecewise-polynomial redescending function
that is widely used with M-estimation. It is defined by

ρ xð Þ ¼ 1− 1− x=sð Þ2
h i3

if jxj≤s

1 if jxjNs
:

(
ð14Þ

the coefficient s controls the scale of the function, and it should be
chosen to reflect the intensity of noise in the observations, or the
variance from its PDF. The values used for s in Corisco during the tests
were typically from 0.1 to 0.15. That means a range of directional errors
from approximately 10° to 17°.

The use of the Tukey bisquare explains only part of Eq. (16). That
expression also includes the choice of the smallest error from the
three classes as the contribution of each observation to the summation.
If the three error values were just added together the result would be
similar to the application of the MAP technique [12,16]. In that case,
the observations would not be classified, and this tends to reduce the
accuracy of the results. The EM technique, on the other hand, causes a
classification of the observations near the solution, and this tends to
benefit the accuracy of the estimation.

InCorisco, selecting the smallest error for each observation is proposed
as a means to perform this classification, directly implementing another
effect of the EM technique. This is not a common procedure in the
application of M-estimation, but it can be justified as approximating
what happens in the EM technique when the cn

k weight for one of the
classes approaches 1 and the others 0. This objective function fromCorisco
can also be seen as a kind of Generalized EM technique, or GEM [31].



975N.L. Werneck, A.H.R. Costa / Image and Vision Computing 31 (2013) 969–981
In short, the Objective function block in Fig. 2 receives as input
the measured edgel directions un from the Edgel extractor block and
the Jacobian matrices Jn from the Camera model block, and also a
hypothetical orientation Ψ given by the optimization procedure. The
orientation and the Jacobian matrices are used to calculate the predicted
directions for each edgel and to produce the residues unvnk, which are
used to calculate a total error, or objective function F(Ψ) using Eq. (16).
This block can also optionally output a list of classes of observations,
obtained as a result of the mink operation in the calculations. This block
also calculates the gradient and the Hessian matrix of the objective
function F(Ψ), relative to the four parameters of Ψ. These derivatives
are transmitted along with the objective function value; thus, they
would belong to the same arrow as F(Ψ) in the diagram.

3.4. Optimization

This sub-section discusses the RANSAC and FilterSQP blocks from
Fig. 2, which constitute the complete Optimization process used in
Corisco. As the diagram illustrates, the RANSAC block does not depend
on an initial orientation estimate, but it produces one to be used by
the FilterSQP block. On the other hand, the RANSAC block needs to have
access to a list of the normal vectors sn calculated from the image edgels.
Both optimization algorithms are iterative, and at each iteration a new
hypothetical orientation Ψ is produced and its corresponding value
F(Ψ) is calculated by the Objective function block. These returned values
are used by the optimization algorithms in their control logic that seeks
to minimize this value. In the case of calculations requested by the
FilterSQP block the derivatives of the objective function are also
calculated and returned.

The RANSAC algorithm [32] is a Robust Statistics estimation tech-
nique employed by many different Computer Vision methods ([18],
Section 4.7), and variations of it are also being developed seeking,
for example, to connect it to probabilistic methods [33,34]. RANSAC
is a random search algorithm that uses samples of small sets of
observations to produce solution hypotheses to be tested. The use of
RANSAC in orientation estimation methods is not new [1,5,9,10,24],
but Corisco is the first edgel-based method to use it. The role of
RANSAC in Corisco is to produce an initial estimate of the solution.
Unlike similar methods, RANSAC does not make assumptions about
the initial estimates of the solution. The exception is the method by
Deutscher et al. [13], which uses a random search, but it is not guided
by the data available.

The application of RANSAC in Corisco is very basic. It is an iterative
algorithm, and each iteration is constituted by the following steps:

1. Pick the normals sn from two edgels, and assume that they are from
the same class k= x.

2. Calculate rx using a cross product of these vectors.
3. Define a full orientation with the x axis aligned to this direction, and

an arbitrary rotation around it.
4. Pick the normal sn from a third edgel, assuming its class to be k=y.
5. Rotate the initial orientation around the x axis so its y axis is

orthogonal to the third sn. This produces a hypothetical orientationΨ.
6. Calculate the objective function value F(Ψ) for this Ψ.
7. If F(Ψ) is smaller than a previously stored value, store these new Ψ

and F(Ψ) as the new best estimate found.

These steps are carried out for a predetermined number Cr of
iterations. This number, along with the grid size Cg, are the two main
control parameters for Corisco, and both can be used to regulate the
compromise between speed and accuracy.

Once all the CrRANSAC iterations are over, itsfinal estimate is used to
initialize a non-linear continuous optimization algorithm, FilterSQP. This
algorithm is not a conventional continuous optimization algorithm such
as Levenberg–Marquadt [14] and BFGS [15], because FilterSQP performs
a constrained optimization. Even though the Corisco objective function
can be calculated for a generic Ψ anywhere in the four-dimensional
quaternion space, the returned solution still needs to be normalized.
The optimization problem solved in Corisco is therefore

argmin
Ψ

F Ψð Þ ¼
X
n

min
k

ρ unvnkð Þ

subject to jΨj ¼ 1:

this objective functionminimized is Eq. (16), and the constraint is that the

quaternion Ψmust have unit norm, or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 þ d2

p
¼ 1. Another

way to write this constraint is to define the constraint function

G Ψð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 þ d2

p
and state thatG(Ψ)=1. FilterSQP [35] is an

algorithm that can solve this kind of problem using the sequential
quadratic programming (SQP) technique, avoiding the use of the so-
called barrier functions.

This concludes the discussion of the optimization procedure used in
Corisco. The Ψ found by FilterSQP is returned by Corisco. The extracted
edgels can also be returned, optionally classified according to their
direction in the environment at the optimal orientation Ψ found. The
value of the objective function can also be returned, and it might be
useful to larger systems built on top of Corisco.

4. Experiments

This section describes four experiments conducted with Corisco. The
method was applied to estimate the orientation of images from
different datasets, and compared with reference orientations obtained
in different ways. In the first two experiments, Corisco performance
was compared to those of similar alternative methods.

The implementation of Corisco used in these tests was based on the
languages Python, Cython andC. Vector normalizationswere performed
with a fast but precise numeric procedure to calculate x−1/2. The
computers used in the experiments were Amazon Web Services
c1.xlarge instances, with processor clocks of at least 2GHz.

4.1. YorkUrbanDB dataset

The first dataset analyzedwas the YorkUrbanDB [15]. It contains 102
images of indoor and outdoor anthropic environments. An ideal
perspective projection camera model was assumed, and the intrinsic
parameters of the camera and reference orientations Ψref were
provided by the dataset creators, obtained from image lines extracted
automatically and labeled manually.

Corisco was executed to find the orientations from each image with
different combinations of Cg and Cr, to study the compromise between
speed and accuracy. The accuracy was evaluated by observing the
distribution of estimation errors over all the 102 images. These errors
were found by applying the reverse rotation matrix corresponding
to the estimated orientation to the reference rotation matrix. The
estimation error is the absolute value in degrees of the residual rotation
obtained.

Fig. 4 shows one example of the application of Corisco to a picture
from the YorkUrbanDB set. The left graph shows the extracted edgels
as small line segments. The right graph shows the predicted edgel
directions calculated at selected points over the image and for the
orientation estimatedbyCorisco. It is possible to see that these predicted
directions are aligned to the objects on the image.

Fig. 5 shows the performance of Corisco for the YorkUrbanDB image
set. Each graph refers to a different number of iterations Cr, and the
vertical axis of the graphs indicate the spacing of the grid lines and
columns Cg varying from 1 to 128 pixels. The left part of each graph
shows the error distributions, and the right part shows the mean
processing time. The solid curve shows the total time, and the dashed
curve shows the time spent only during the RANSAC step.

The error distributions in Fig. 5 are represented by box-plots. The left
whisker indicates the smallest error, and the right whisker is the sixth



Fig. 4. Example of an image from the YorkUrbanDB set. The extracted edgels (left), and edgel directions predicted from the orientation estimated by Corisco (right) (Cg=32 Cr=10,000).
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largest error from the 102 images. The box limits are given by the first
and third quartile of the error distribution. The vertical lines that cross
the boxes indicate the median distribution.

The graphs show that the error distribution increases with the grid
size Cg, and that the reduction of Cr also increases errors. On the other
hand, increasing Cg or decreasing Cr reduces the calculation time, as
expected. It is possible to see how the time spent on the RANSAC
algorithm is directly proportional to Cr, and for large values of Cr this
also becomes the stage that takes the longest in the process.

Table 2 shows some numerical performance results. The first three
lines from the table refer to three alternative methods tested by Denis
et al. [15,36], and all these values were reported by these authors.
Their experiments used a CPU with 1.83 GHz, while processors with
2.0 to 2.33GHz were used with Corisco; hence, a factor of 0.8 could be
applied to these time values to try to compensate for the difference.
On the other hand, these authors did not clearly state whether the
measured times refer just to the optimization procedure or whether
they also include the time for the image processing; this is indicated
by the question marks in the table.

The fourth line from Table 2 refers to themethod by Tardif [7], based
on line extraction and the J-linkage algorithm. We obtained these
results executing the source code kindly provided by that author on a
machine slightly slower than that used for Corisco.

The first three alternative methods in Table 2 display a compromise
between time and accuracy, similar to that of Corisco. The J-linkage
method exhibited good performance and accuracy when compared to
the other three alternative methods. The table shows that Corisco was
able to deliver both faster andmore accurate results than the alternative
methods. The combination of Cr = 1000 iterations and Cg = 32 pixels
was especially interesting, and rivals all of the four alternative methods
both in time and in accuracy.

4.2. ApaSt dataset

Wedeveloped the ApaSt image set during this research. It consists of
48 images from the same environment. Half of these images were
obtained with a Nokia N8 smartphone, and the other half with a Sony
α230 camera. All the images were scaled to a width of 1000 pixels.
Half of the images captured had the camera in an approximately upright
orientation, and the other half were rotated by 90° around the z
direction. This increases the diversity of orientations in the set, and
should also benefit the estimation of intrinsic parameters. Fig. 6 displays
the application of Corisco to one image from the ApaSt set, similar
to Fig. 4.
The reference orientations and the intrinsic parameters for the two
cameras were found using Bundler, a point-based multi-view shape-
from-motion method by Snavely et al. [37]. Bundler uses a simpler
quadratic distortion model instead of the Harris model used in Corisco,
but for such weak distortions they are very similar.

Bundler ignores the existence of a natural reference frame; thus, the
reference orientations found are off the desired values by an unknown
rotation that had to be estimated in order to evaluate Corisco and the
alternative method. This rotation between the Bundler reference and
the natural reference frame was estimated by solving a linear system
in which the unknowns are the coefficients of the quaternion from the
rotation. The right-side constants from the system are the orientations
estimated with the analyzed methods, and the reference orientations
found by Bundler, represented as quaternions, are used to assemble
the matrix with the left-side coefficients from the system, following
the rules of the Hamilton product. The rotation for the alternative
method was estimated separately in order to ensure the best possible
fit.

Similar to the previous experiment, Corisco was applied to this
dataset with multiple combinations of its control parameters, and
the alternative method by Tardif [7] was also run. The results from
the alternative method and from some Corisco cases are shown in
Table 3. The accuracies observed were generally better than those
observed in the first experiment, for both Corisco and the alternative
method. However, in this case it was not possible to observe a better
overall Corisco performance than in the alternativemethod, although
it was still possible to obtain better accuracy for a larger execution
time.

It should be noticed that the alternative method was applied in this
experiment disregarding the radial distortion model. An attempt was
made to rectify the images before applying the alternative method,
but the result was only a small increase in execution time (30 ms),
and also a small reduction of accuracy. Because accuracy was not
improved as expected, these results were not used. On the other hand,
ignoring the radial distortion model in the application of Corisco did
reduce accuracy as expected, and the results with the distortion model
were kept.

Fig. 7 shows the Corisco performance in the ApaSt dataset for more
parameter combinations. The results are similar to those from the
YorkUrbanDB experiment. However, in the case of the ApaSt dataset,
Corisco reached smaller errors in some tests. Some reasons for the better
accuracy obtained both with Corisco and with the alternative method
might be the size and quality of the images, or better accuracy from
the reference orientations.



Fig. 5. Corisco performance for the YorkUrbanDB dataset. Each graph corresponds to a different number of Cr, and each line in the graph represents a different Cg. The error distributions are
represented by box-plots. The compromises between speed and accuracy can be noticed by comparing the different curves.
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4.3. StreetView dataset

The third experiment used a dataset provided by theGoogle company,
collected for their StreetView project [38]. Only 251 images were used in
this experiment. The images use the equirectangular projection, andwere
captured with a camera rosette installed on top of a car driving in an
urban environment. The reference orientations in this dataset were
obtained with sensors such as accelerometers and magnetometers. This
dataset also ignores the existence of a natural reference frame; thus, a
transformation had to be estimated as previously.

Fig. 8 shows an example of the analysis of one of these images using
Corisco. Although the distortions can be quite intense, Corisco works



Table 2
Comparative table of Corisco performance in the YorkUrbanDB dataset for a few selected
combinations of parameters, and the performance of some alternative methods.

Method Time Error

[s] Mean σ 1/4 Median 3/4

EM Newton 27+?
4.00∘

1.00∘ 1.15∘ 2.61∘ 4.10∘

MAP Quasi-Newton 6+? 4.00∘ 1.00∘ 1.32∘ 2.39∘ 4.07∘

EM Quasi-Newton 1+? 9.00∘ 1.00∘ 4.04∘ 6.21∘ 10.33∘

J-linkage 1.13 8.23∘ 13.76∘ 1.14∘ 2.36∘ 4.44∘

Corisco Cr=104 Cg=1 47.20 1.51∘ 3.26∘ 0.69∘ 1.09∘ 1.51∘

Corisco Cr=104 Cg=4 16.68 1.71∘ 3.35∘ 0.72∘ 1.14∘ 1.64∘

Corisco Cr=104 Cg=32 7.57 2.43∘ 4.03∘ 0.97∘ 1.54∘ 2.42∘

Corisco Cr=103 Cg=1 8.12 1.70∘ 3.22∘ 0.70∘ 1.11∘ 1.77∘

Corisco Cr=103 Cg=4 2.50 2.02∘ 3.86∘ 0.81∘ 1.24∘ 1.80∘

Corisco Cr=103 Cg=32 0.99 2.44∘ 3.54∘ 1.00∘ 1.68∘ 2.64∘

Corisco Cr=200 Cg=1 5.34 2.08∘ 3.38∘ 0.72∘ 1.22∘ 1.78∘

Corisco Cr=200 Cg=4 1.89 3.27∘ 6.38∘ 0.85∘ 1.34∘ 2.35∘

Corisco Cr=200 Cg=32 0.45 3.29∘ 4.99∘ 0.99∘ 1.72∘ 3.46∘

Table 3
Comparative table of the Corisco performance in the ApaSt dataset for a few selected
combinations of parameters, and the performance of an alternative method.

Method Time Error

[s] Mean σ 1/4 Median 3/4

J-linkage 0.74 2.61∘ 3.28∘ 1.32∘ 1.87∘ 2.77∘

Corisco Cr=104 Cg=1 91.69 0.65∘ 1.37∘ 0.29∘ 0.47∘ 0.60∘

Corisco Cr=104 Cg=4 28.05 0.58∘ 0.27∘ 0.39∘ 0.56∘ 0.78∘

Corisco Cr=104 Cg=32 9.20 2.51∘ 4.60∘ 0.79∘ 1.39∘ 2.33∘

Corisco Cr=103 Cg=1 17.65 2.02∘ 4.93∘ 0.31∘ 0.47∘ 0.68∘

Corisco Cr=103 Cg=4 5.05 1.47∘ 4.34∘ 0.39∘ 0.56∘ 0.78∘

Corisco Cr=103 Cg=32 1.51 3.45∘ 5.36∘ 0.79∘ 1.46∘ 2.63∘

Corisco Cr=200 Cg=1 14.44 3.90∘ 7.31∘ 0.36∘ 0.56∘ 0.80∘

Corisco Cr=200 Cg=4 3.90 4.43∘ 7.81∘ 0.42∘ 0.67∘ 0.96∘

Corisco Cr=200 Cg=32 0.81 8.84∘ 9.82∘ 0.89∘ 3.55∘ 16.45∘
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with this projection in the same way as in the previous ones, and is
equally effective.

The images were analyzed using two different combinations of
parameters, first with Cr=10000 and Cg=1, and later with Cr=1000
and Cg = 16. The median and the third quartile found in the error
distribution for the first pair of parameters were located at 0.37° and
0.53° respectively, and the maximum observed error was 2.28°. The
mean process duration in this case was 62.11 s. With the second pair
of parameters the median and third quartile were 0.73° and 1.07°,
the maximum error was 4.31° and the mean time was 1.55 s. This
performance was relatively good, and comparable to what was
observed in the previous experiments.

4.4. Fisheye lens

The last experiment performed with Corisco was the analysis of
images captured with a Fujinon FE185C046HA fisheye lens attached to
a Basler Ace acA1300-30gc camera. The intrinsic parameters from this
camera, assumed to follow the Polar Equidistant projection from
Table 1, were obtained by bundle adjustment [39,18] with a known
calibration target.

Fig. 9 shows one example image from this set. The Corisco per-
formance was not evaluated with reference orientations, but it is
possible to see in Fig. 9 that the method was effective. These images
were also re-mapped into perspective projection images, taking the
Fig. 6.Example image from the ApaSt dataset (Cg=8 Cr=10,000). The left graph shows the extr
Corisco using the camera models provided.
estimated orientation into account so that the image planes were
aligned to the environment directions. The resulting image edges
were determined to be aligned to the image frame in a visual inspection.

5. Conclusions

This article presented Corisco, an edgel-based orientation estimation
method that extended previous works [12–16], andwas also influenced
by other edgel-based vision approaches [17,24]. Corisco starts with an
edgel extraction procedure based on edge detection and a grid mask.
The estimation happens by a minimization of an error function, defined
usingM-estimation, comparing themeasured direction from the edgels
to predicted directions calculated with a camera model. The proposed
optimization process starts with the flexible and robust RANSAC
algorithm, and finishes with a more accurate continuous optimization
performed by FilterSQP. The objective function proposed is relatively
simple, and allows for closed formulas for its derivatives in FilterSQP.
The grid mask spacing Cg and the number of RANSAC iterations Cr are
two control parameters that can be used to regulate the compromise
between speed and accuracy.

Coriscomanaged to create amethod that is simpler, more flexible and
more robust than the alternatives. The experiments, conducted with
a variety of camera models and reference orientation sources, also
demonstrated its accuracy, flexibility and competitive performance. The
experiments also validated the proposed mechanisms to compromise
between speed and accuracy. In some cases a speedup of 10 times was
achieved while causing little accuracy loss. Because Corisco has excellent
performance, works with any camera model and allows tuning the
acted edgels, and the right shows the predicted direction from theorientation estimated by



Fig. 7. Corisco performance for the ApaSt dataset, similar to Fig. 5.
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process to achieve better performances, it encourages wider use of edgel-
based orientation estimation techniques.

This research also illustrates the benefits from investigating
techniques such as M-estimation and non-linear optimization
algorithms such as FilterSQP. We agree with Meer [40] in that
investigating these techniques is important to the development of
Computer Vision.
Despite the good performance that Corisco achieves, it might prove
interesting to investigate further enhancements of its optimization
procedure, starting by replacing the proposed RANSAC implementation
with alternative algorithms [33,21,41,20]. It should be particularly
interesting to consider techniques that were successfully applied in
line-based orientation estimation methods, such as J-linkage employed
in the alternative method prominently featured in this article [7], and



Fig. 8. Example image from the StreetView dataset (Cg=16 Cr=10000).

Fig. 9. Example image from the fisheye lens experiment (Cg=4 Cr=1000).
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which exhibited a better execution time than the proposed method in
one of the experiments. Another alternative is to employ recently
proposed techniques such as the branch-and-bound procedure by
Bazin et al. [42], or the Facility Location Problem techniques by Antunes
and Barreto [43].

It is also possible to investigate the application of other Robust
Statistics techniques [31] and other error functions to this problem,
replacing the choice of M-estimation and the Tukey bisquare function.
And finally, it might be interesting to investigate alternative ways to
extract the edgels [44,45,24] and to calculate the residues [46]. The
interplay of the grid-masking procedure with image smoothing and
down-scaling should also be better studied.

One interesting way to extend Corisco might be to cluster the
edgels into straight lines or curves, performing a line extraction
along with the orientation estimation, possibly creating a feedback
process similar to the one proposed by Ji and Fermüller [47]. The
existence of estimation biases such as discussed in that article should
also be studied.

There are two immediate applications for Corisco under study right
now. The first is to use it as a visual compasswith data fusion techniques
to enhance the localization of a robot estimated from odometry data.
The other is to perform a preliminary orientation estimation with
environment reconstruction systems [1,2,48]. Corisco can also be
adapted to analyze plane normals extracted from 3D point clouds
obtained by sensors such as laser rangers or structured light rigs.
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